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1. Introduction

Early ideas of t’Hooft [1] suggested that the physics and dynamics of strong interactions

could be understood and described through a theory of strings. Such an idea started

materializing with the advent of Maldacena’s conjecture [2], also known as AdS/CFT. The

authors showed that a theory of strings can capture both perturbative and non-perturbative
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aspects of a (3+1) dimensional field theory. Unfortunately the field theory in question,

namely N = 4 super Yang-Mills (SYM), does not have great phenomenological interest. A

first step towards phenomenologically more relevant generalizations was made by extending

the AdS/CFT duality to branes at conical singularities [3, 4]. The prototype example is

that of D3-branes at a conifold singularity (see, among the more relevant papers, [4 – 12]).

This improvement provided a way of breaking the large amount of supersymmetry to the

minimal one, and breaking the conformal symmetry as well.

A characteristic of all the models realized with branes at singularities is that the dual

field theories only contain fields in the adjoint or bifundamental representation of the gauge

factors. Obviously for phenomenological reasons the next step is the inclusion of matter

in the fundamental representation. A beautiful example appeared in [13], where the new

degrees of freedom where introduced in the brane picture through extra non-compact flavor

branes.

The difference between color and flavor branes is substantial. Color branes undergo a

geometric transition and ‘disappear’: the open string dynamics on them is equally described

by a dual closed string background with fluxes. Flavor branes instead are still present in

the dual background after the geometric transition. Being non-compact, they do not have

a 4d gauge dynamics. On the other hand they do have an higher dimensional gauge theory

living on them which, according to the usual AdS/CFT dictionary, is dual to a global

symmetry in field theory. In an appropriate large Nc and small gs regime, the system can

be described in supergravity; the action must however be enriched with a Dirac-Born-Infeld

and Wess-Zumino piece to describe the flavor branes:

S = SIIB + SDBI + SWZ . (1.1)

Many ideas and examples originated from the previous setup [14 – 16]. All those frame-

works are good for a regime where the number of flavors Nf is much smaller than the

number of colors Nc, because they restrict to the so called quenched approximation. They

deal with probe flavor branes that do not backreact on the closed string sector. From a

field theoretical diagrammatic point of view, they give the correct physics in the t’Hooft

limit with Nf = fixed [1], where quarks are only external legs not participating in loops.

On the other hand some papers appeared where the backreaction of the flavor branes is

taken into account, realizing in this way the Veneziano expansion with Nf/Nc = fixed [17].

Early works are [18, 19]. More recently a series of papers appeared where the backreaction

of the flavor branes is handled through a powerful smearing technique. In [20] it was

proposed a gravity dual to N = 1 SQCD (see also [21]), in [22] to N = 2 SQCD and

in [23] to the Klebanov-Witten (KW) theory [4] with flavors. In [24] it was considered

the addition of new degrees of freedom to the Klebanov-Tseytlin (KT) [7] and Klebanov-

Strassler (KS) [8] setups. The new degrees of freedom are non-chiral fundamental matter,

which enriches a lot the duality cascade of the renormalization group (RG) flow.

In this paper I extend the smearing technique to a case of chiral fundamental matter.

The new ingredient is that the flavor branes needed to realize such a field theory have

a non-trivial gauge bundle on them. First of all taking into account the flux raises new

issues about supersymmetry. Then the gauge flux induces new charges which have to be
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taken into account, and it could give rise to new modes at the intersection of flavor branes.

The paper can thus be thought as a generalization of the smearing technique to the case of

non-trivial gauge bundles. The interest resides in the fact that the chiral case is much more

generic than the non-chiral one, when one tries to extend the flavoring of cascading theories

done in [24] to fractional branes at more generic conical singularities. The non-chiral case

(flavor branes with trivial gauge bundle) seems to be quite special.

The KT and KS supergravity solutions have a field theory dual whose RG flow can

be understood as a cascade of Seiberg dualities. When the ranks of the gauge factors are

different, they reduce along the flow while their difference remains constant. In presence

of flavors also the difference reduces along the cascade [24], possibly reaching an IR theory

with equal ranks that does not cascade any more. This is the flow considered in this

paper. Moreover in the chiral case there is a further issue: along the cascade new gauge

singlet fields appear/disappear, in order to match a global anomaly. They have a beautiful

interpretation as chiral zero modes living at the intersection of flavor branes with flux.

The existence of these modes was already noticed in [25], where the authors used a similar

chiral cascade to realize ISS vacua [26] at the bottom.

Following the ideas of [24], Seiberg dualities are interpreted in supergravity as large

gauge transformations. This gets nicely married with the fact that gauge ranks are mea-

sured by Page charges, rather than Maxwell charges. In this paper for the first time there

is a disagreement between the two, and only Page charges give an exact matching with

field theory.

The paper is organized as follows. In section 2 I analyze the field theory with chiral

matter and the cascade describing its RG flow. In section 3 I construct a supergravity dual

in the Nf ≪ Nc limit with probe D7-branes and I show that a non-trivial gauge bundle is

needed. In section 4 I present the supergravity equations with sources, and I use them in

section 5 to construct a backreacted solution for the case Nf ∼ Nc. In section 7 I compute

Maxwell and Page charges; I also give an holographic interpretation of the gauge singlet

fields. In section 8 I construct a dictionary between supergravity and field theory, and a

perfect matching is verified. Conventions and computations are in various appendices.

2. A field theory cascade

Consider a field theory whose quiver diagram is depicted in figure 1. It consists of two

gauge groups SU(g1) × SU(g2) (where for definiteness we take g1 > g2) and two flavor

groups U(Nf )×U(Nf ). Part of the flavor group is generically anomalous: the axial U(1)fA
always has a flavor-gauge-gauge triangle anomaly, while for g1 6= g2 both U(Nf ) factors

have a flavor-flavor-flavor anomaly with only the diagonal U(Nf )fV anomaly-free. There

are four bifundamental fields Ai and Bi with i = 1, 2 and four (anti)fundamental fields q,

q̃, Q, Q̃. The superpotential I consider is

W = h (A1B1A2B2 −A1B2A2B1) + λ (q̃A1Q+ Q̃B1q) (2.1)

where traces on color and flavor indices are meant. The SU(2) × SU(2) flavor symmetry

of the theory without fundamental fields (acting on Ai and Bj) is broken to its toric

subgroup by the superpotential. Moreover there are two baryonic symmetries U(1)B (which
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Figure 1: Quiver diagram of the electric theory.

Σ0

Nf

Nf
r̃

ai
Ñ2r

N2

g2bj
2g2-g1
+Nf

Figure 2: Quiver diagram of the magnetic theory after Seiberg duality.

SU(r1) × SU(r2) U(Nf ) × U(Nf ) SU(2)2 U(1)R U(1)B U(1)B′

Ai (r1, r2) (1, 1) (2, 1) 1/2 1 0

Bi (r1, r2) (1, 1) (1, 2) 1/2 −1 0

q (r1, 1) (1,Nf ) (1, 1) 3/4 1 1

q̃ (r1, 1) (Nf , 1) (1, 1) 3/4 −1 −1

Q (1, r2) (Nf , 1) (1, 1) 3/4 0 1

Q̃ (1, r2) (1, Nf ) (1, 1) 3/4 0 −1

Φ̃k (1, 1) (Nf ,Nf ) (1, 1) 1
2 − k 0 0

Φk (1, 1) (Nf , Nf ) (1, 1) 1
2 − k 0 0

Table 1: Field content and symmetries of the chirally flavored KT theory.

actually is the diagonal U(1) subgroup of the flavor group) and U(1)B′ and an anomalous

R-symmetry U(1)R. The theory is chiral, in the sense that we cannot construct mass terms

without breaking the flavor symmetry. All the relevant charges are summarized in table 1.

The theory without flavors and with g1 = g2 has a complex line of conformal points [4,

29], where the anomalous dimensions can be derived from the non-anomalous R-charges.

If we take the number of colors g1 and g2 much larger than the number of flavors Nf , and

we suppose that the anomalous dimensions of the bifundamentals only take corrections at

second order inNf/Nc (this hypothesis was supported by a dual gravity analysis in [15, 23]),
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we can compute the NSVZ gauge β-functions [27]:

βG1
= − 3G3

1

16π2

[
g1 − g2 −

Nf

4

]
βG2

=
3G3

2

16π2

[
g1 − g2 +

Nf

4

]
. (2.2)

We find that, if the difference (g1−g2) is larger than Nf/4, in the IR SU(g1) flows to strong

coupling while SU(g2) flows to weak coupling. We can then perform a Seiberg duality [28]

on node SU(g1). The mesons are: BiAj ≡ Mij , q̃Ai ≡ Ñi, Biq ≡ Ni, q̃q ≡ Σ0. The

superpotential in the magnetic theory is

W ′ = h (M12M21 −M11M22) + λ (Ñ1Q+ Q̃N1) +
1

Λ̂
[ajbiMij + airÑi + r̃biNi + r̃rΣ0] ,

(2.3)

where we sum over i, j = 1, 2. Λ̂ is the dynamically generated scale involved in Seiberg du-

ality [28], and represents the energy scale where we transit from a good electric description

to a good magnetic description. Then we integrate out Mij, N1, Ñ1, Q, Q̃. The relevant

F-term equations are:

−hM22 +
1

Λ̂
a1b1 = 0

hM21 +
1

Λ̂
a2b1 = 0

λQ+
1

Λ̂
a1r = 0

λ Q̃+
1

Λ̂
r̃b1 = 0 ,

(2.4)

so that we obtain

W ′ =
1

hΛ̂2
(a1b1a2b2 − a1b2a2b1) +

1

Λ̂
(Ñ2a2r + r̃b2N2 + Σ0r̃r) . (2.5)

Notice that the mesonic fields have non-canonical mass dimension 2, and after canonical

normalization of all fields some order one coupling constants could arise from the Kähler

potential.

The magnetic quiver is depicted in figure 2. To compare it with the original elec-

tric quiver, we relabel the fields: ai, bj → Ai, Bj exchanging 1 ↔ 2; r, r̃ → Q, Q̃ and

N2, Ñ2 → q, q̃; recall that the biggest rank is now g2. We see that the theory has repro-

duced itself, apart from the new gauge singlet field Σ0 in the (Nf ,Nf ) representation of the

flavor group and a shift in gauge ranks: (g1, g2) → (g2, 2g2 − g1 +Nf ). Even the superpo-

tential has reproduced itself, with the quarks coupling with A1 and B1, apart from the new

superpotential term 1
Λ̂
Σ0Q̃Q. Notice that the gauge singlet Σ0 is there because of “conser-

vation” of the global flavor-flavor-flavor anomaly of the axial U(Nf )fA. In particular, the

axial U(1)fA is broken by the anomaly to Zg1−g2, and this is true both in the electric and

magnetic quiver. The dual gravity interpretation of this will be discussed in section 8.

Now let me ask what is the fate of the gauge singlet field. The theory continues flowing

in the IR until another Seiberg duality is required. So we can generically consider a theory

as in figure 1 but with an extra gauge singlet Φ̃k in the (Nf ,Nf ) flavor representation from

the beginning, and superpotential

W = h (A1B1A2B2 −A1B2A2B1) + λ (q̃A1Q+ Q̃B1q) + λk Φ̃k Q̃(B2A2)
kQ , (2.6)
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q̃

q

g1

Nf

Nf

g2

Q

Q̃

Ai

Bj
Φk

Figure 3: Quiver diagram of an electric theory with a gauge singlet field Φk in the (Nf , Nf) flavor

representation.

not summed over k. As will be clear momentarily, it is better to consider a general su-

perpotential depending on k, even if here we are interested in k = 0. We perform a

Seiberg duality on node SU(g1) as before, and integrate out Mij , N1, Ñ1, Q, Q̃ (the F-term

equations are still (2.4)). We obtain

W ′ =
1

hΛ̂2
(a1b1a2b2 − a1b2a2b1) +

1

Λ̂
(Ñ2a2r+ r̃b2N2 + Σ0r̃r) +

λk

hkλ2Λ̂k+2
Φ̃k r̃(b1a1)

k+1r .

(2.7)

We learn that at each Seiberg duality a new gauge singlet field in the (Nf ,Nf ) represen-

tation is generated, while the existing ones develop longer and longer superpotential terms.

We can try to estimate the behavior of the superpotential terms Õk = Φ̃k Q̃(B2A2)
kQ

under the RG flow. We consider again a regime of parameters where g1 and g2 are much

larger than (g1 − g2) and Nf , so that the theory is close to its conformal points. Then the

quantum dimensions of the fields A, B, q, q̃, Q, Q̃ can be derived from the R-charges (see

table 1) through the relation D[O] = 3
2RO, strictly valid at a conformal point. From the

supergravity computation of the gauge coupling β-functions and their matching with field

theory, one deduces that the quantum dimensions of A and B take corrections of order

(Nf/Nc)
2, whilst the quark field ones of order Nf/Nc [15, 23]. The gravity computation

does not tell us nothing about the quantum dimension of Φ̃k since it does not enter in

the β-functions, and in fact the dimension must take corrections of order one. Recall that

gauge singlet scalars must have quantum dimension bigger than or equal to 1, around a

conformal point. We conclude that the superpotential terms Õk = Φ̃k Q̃(B2A2)
kQ not

only are irrelevant (their quantum dimension is bigger than 3), but become more and more

irrelevant going towards the IR (their quantum dimension runs). Notice that the fields Φ̃k

always couple with the quarks of the smallest gauge group.

Apart from this, the theory reproduces itself and cascades down, with both the ranks

and the difference of the gauge group ranks reducing. From this point of view this chiral

theory is similar to the one studied in [24], but with the important difference that in this

one (g1−g2) scales by Nf , while in the latter it scales by Nf/2. We will match this behavior

with the dual gravity description in section 8.

Last but not least, I want to understand what happens if we start with a gauge singlet

field Φk in the opposite flavor representation: (Nf , Nf ) (this implies that it couples to the

– 6 –
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quarks of the largest gauge group). The quiver is in figure 3. I will consider two cases at

the same time: with minimal superpotential and with a larger one.

W = h (A1B1A2B2 −A1B2A2B1)+λ (q̃A1Q+ Q̃B1q)+α0 Φ0q̃q+αk Φkq̃(A2B2)
kq . (2.8)

We perform a Seiberg duality going to the magnetic description as before:

W ′ = h (M12M21 −M11M22) + λ(Ñ1Q+ Q̃N1) + α0 Φ0Σ0 + αk ΦkÑ2(M22)
k−1N2

+
1

Λ̂
[ajbiMij + airÑi + r̃biNi + r̃rΣ0] .

(2.9)

This time we can integrate out Φ0 and Σ0 as well. After doing it we obtain:

W ′ =
1

hΛ̂2
(a1b1a2b2 − a1b2a2b1) +

1

Λ̂
(Ñ2a2r + r̃b2N2) +

αk

hk−1Λ̂k−1
ΦkÑ2(a1b1)

k−1N2 .

(2.10)

The operators Ok = Φk q̃(A2B2)
kq behave quite differently from the previous Õk.

They are still irrelevant, but actually dangerous irrelevant (see [12] for a similar discussion

in SQCD with quartic superpotential). Their quantum dimension becomes smaller and

smaller going towards the IR, until some point when they behave as mass terms and the

corresponding gauge singlet Φ0 is integrated out together with the would-be-generated

gauge singlet Σ0 in the opposite (Nf ,Nf ) representation.

We can define a relative number NΦ counting the number of (Nf , Nf ) fields (Φk) minus

the number of (Nf ,Nf ) fields (Φ̃k). This number decreases by one unit at each Seiberg

duality, either because a field contributing +1 is integrate out or because one contributing

−1 is generated. We could say that our theory is self-similar along the cascade just adding

this number NΦ to the list of running ones.

The flow of the theory drastically depends on the choice of initial ranks, as also observed

in [15] (see also [24]). Since along the flow both ranks g1 and g2 and their difference reduce,

we could either reach a point were one of the ranks is zero (or order of their difference),

or a point where the difference is zero (or order Nf ) while the ranks are still large. I

am interested in the latter situation. Notice from (2.2) that if (g1 − g2) < Nf/4 both

β-functions are positive and there are no Seiberg dualities anymore.

Thus we can imagine the following flow, from the bottom up. In the far IR the two

gauge ranks are equal (say N0), the theory has no exotic gauge singlet fields (NΦ = 0) and

there are no flavor-flavor-flavor (f-f-f) anomalies at all. Both β-functions are positive. This

theory was extensively studied in [23] where a proposal was made for the full flow down

to a conformal fixed point with flavors. To go up in energy, we perform Seiberg dualities.1

So at step one the gauge group is SU(N0 + Nf ) × SU(N0) and there is one gauge singlet

Φ0 (thus NΦ = 1) with superpotential coupling O0. Still there are no f-f-f anomalies. This

theory correctly flows in the IR to what I stated above. Going generically up by n steps,

the gauge ranks are as prescripted by the cascade, and there are n gauge singlets Φk=0...n−1

(NΦ = n) with their corresponding superpotential couplings Ok.

In order to study this theory at strong coupling and for a large number of flavors (Nf

of order Nc), I am going to construct a supergravity dual to this flow.

1Recall that the RG flow is irreversible: the UV determines the IR but not the opposite. So we always

have to think in terms of describing the theory at some scale, compatible with its flow to the IR.
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3. SUSY D7 probes on the warped conifold

My aim is now to realize a supergravity dual of the previous theory and its RG flow. The

starting point is obviously the easiest of its steps, namely the SU(g1) × SU(g2) theory

without extra gauge singlets. We are going to realize it as the near horizon theory of a

stack of (fractional) D3-branes at a Calabi-Yau singularity plus non-compact D7-branes.

Let me proceed stepwise.

As is well known, putting N D3-branes at a conifold singularity [4] we realize an

SU(N)×SU(N) N = 1 gauge theory, with chiral fieldsAi, Bi (i = 1, 2) in the bifundamental

and anti-bifundamental representation of the gauge group. On the gravity side, at large N

and in the near horizon limit the system is described by Type IIB Supergravity on a warp

product space of 4d Minkowski and a 6d conifold, with warp factor h(r) = L4/r4 and N

units of self-dual 5-form flux.

As suggested in [13] and then further on investigated in [14], we can add chiral su-

perfields transforming in the fundamental representation of the gauge group by wrapping

D7-branes on 4-cycles on the gravity side. In order that the gauge theory living on the D7-

brane worldvolume describes a non-dynamical global flavor symmetry on the field theory

side, the 4-cycle must be non-compact. And in order to have a supersymmetric embedding

the 4-cycle must be holomorphic (I will have to say more about this). We can specify the

complex structure of the conifold by defining it as the variety z1z2−z3z4 = 0 in C4. Among

the many, there are two classes of holomorphic divisors which are interesting for us.

The first class of 4-cycles is represented by ΣK = {z1 +z2 = 0}. It preserves a diagonal

SU(2)D subgroup and the U(1)R factor of the conifold isometry group SU(2)2 × U(1)R,

and was studied in [16]. This embedding was then used in [24] to add non-chiral matter

to the KS [8] and KT [7] theories. The other class is represented by ΣO = {z1 = 0} and

was extensively studied in [15]. The latter 4-cycle has very different properties from the

former: it fully breaks the SU(2)2 conifold isometry (but still preserving U(1)R) and it is

made of two separate intersecting branches. As argued in [15] it introduces chiral matter

exactly in the way we are looking for: according to the quiver of figure 1 and with the

superpotential (2.1).

In order to create a disbalance in the gauge ranks we have to add D5-branes wrapped

on the non-trivial 2-cycle of the conifold [5]. Their presence generates, among the other

effects, background values for the 3-form fluxes F3 and H3. The main difference between

the two classes of D7-brane embeddings is that on the non-chiral ΣK the pull-back of H3

is zero, whilst on the chiral ΣO is not. If Ĥ3 (hatted quantities are pulled-back) is zero

we can always gauge away a possible pull-back of B2 by a choice of F2, so that F = 0.2

I defined the gauge invariant flux on the brane as F = B̂2 + 2πF2, where F2 = dA is the

usual field strength of the gauge bundle. If Ĥ3 6= 0 we cannot gauge away F in any way

and we have to worry about it. As we will see its effects are many: first of all it affects the

supersymmetry constraints on the brane configuration, moreover it generates new induced

charges and modifies the running of bulk fluxes.

2Some care has to be paid to possible sources for F on the brane, arising whenever Ĉ6 6= 0. Moreover

F2 is quantized on 2-cycles.
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The first step in the construction of a fully backreacted solution with this kind of D7-

branes is to understand which are the supersymmetric embeddings and what is the flux

induced. These two issues are addressed by studying probe branes.

To set our conventions, we start considering a probe D7-brane along ΣO = {z1 = 0}
in the singular conifold with 5-form flux (the KW theory [4]), and look for possible SUSY

gauge bundles. The metric of the supergravity solution is

ds2 = h(r)−
1

2 dx2
3,1 + h(r)

1

2

{
dr2 + r2 ds2T 1,1

}

ds2T 1,1 =
1

6

∑
j

(
dθ2
j + sin2 θj dϕ

2
j

)
+

1

9
(dψ +

∑
j cos θj dϕj)

2
(3.1)

where the warp factor is given by h(r) = L4/r4, with L4 = 27
164πgsNα

′2. In the following

we will set α′ = 1. The Calabi-Yau (CY) geometry is described by a real (1, 1) Kähler form

and an holomorphic (3, 0)-form, both closed and co-closed:

J =
1

3
r dr ∧ (dψ +

∑
j cos θj dϕj) −

1

6
r2

[
sin θ1 dθ1 ∧ dϕ1 + sin θ2 dθ2 ∧ dϕ2

]
(3.2)

Ω = eiψ
(
dr + i r

1

3
g5

)
∧ r2 1

6
(dθ1 − i sin θ1 dϕ1) ∧ (dθ2 − i sin θ2 dϕ2) . (3.3)

They satisfy J3 = 3i
4 Ω∧Ω = 6vol6. More details on my conventions and the CY geometry

are written in appendix A.

As shown in [33] the conditions for a spacetime filling D7-brane to be supersymmetric

(which means that there is a κ-symmetry on the brane that preserves some Killing spinors

of the bulk) on a background with closed NS-NS potential B2 can be rephrased as:

• the embedding is holomorphic;

• the gauge invariant field strength F = B̂2 + 2πα′F2 is a (1, 1)-form;

• it holds

Ĵ ∧ F = tan θ

(
vol4 −

1

2
F ∧ F

)
(3.4)

for some constant θ (that depends on which combination of Killing spinors is pre-

served).3 Here J is the 6d Kähler form and vol4 = 1
2 Ĵ ∧ Ĵ .

Then in [35] it was shown that these conditions still assure κ-symmetry on a background

M6 with SU(3)-structure and NS-NS and R-R fluxes, provided that we substitute, in place

of J , the 2-form Jw that defines the SU(3)-structure of M6. When M6 is a warped CY,

as in (3.1), Jw = h1/2 J .

The holomorphic embedding we are considering is made of two branches: Σj =

{θj , ϕj = const}. For definiteness we concentrate on Σ2; then the pull-back of J is easily

3The expression for θ depends on how the 10d Killing spinors are constructed from the 6d one. In our

class of SU(3)-structure solutions θ is a constant, but in general it can be a function of the 6d manifold.
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derived from (3.2). We are looking for gauge bundles on the D7-brane such that F is a

real (1, 1)-form, closed and co-closed. We take the (1, 1) ansatz

F = f1(r)
1

3
r dr ∧ ĝ5 + f2(r)

1

6
r2 sin θ1 dθ1 ∧ dϕ1 . (3.5)

When imposing closure and co-closure (it is a linear system) we get two solutions:

FASD =
1

3r3
dr ∧ ĝ5 +

1

6r2
sin θ1 dθ1 ∧ dϕ1 (3.6)

FSD =
1

3
r dr ∧ ĝ5 − 1

6
r2 sin θ1 dθ1 ∧ dϕ1 . (3.7)

The first solution solves the κ-symmetry condition (3.4): it is anti-self-dual (ASD: F = −∗4

F) and primitive (F ∧ Ĵ = F ∧ Ĵw = 0). The second one instead is not supersymmetric: it

is self-dual (SD) and in fact proportional to the unwarped Kähler form (F ∝ Ĵ = h−1/2 Ĵw)

so that it cannot solve (3.4) unless the warp factor is constant.4

Then we consider a probe D7-brane in the Klebanov-Tseytlin background [7]. This

supergravity solution describes N D3-branes and M fractional D3-branes at the tip of a

singular conifold. The fractional D3’s can be thought as D5-branes wrapped on the 2-

cycle of the conifold and shrunk at the origin. The dual gauge theory has the same quiver

diagram as in the Klebanov-Witten case, but with gauge group SU(N+M)×SU(N). Thus

the effect of the wrapped D5’s is to increase only one rank.

The metric is still that of a warped singular conifold (3.1), but with different warp

factor:

h(r) =
27πα′2

4r4

[
gsN +

3(gsM)2

2π

(
1

4
+ log

r

r0

)]
. (3.8)

As well known, the logarithmic behavior is dual to the cascade of gauge ranks [8]. The

fluxes are:

B2 =
3

2
gsM ω2 log

r

r0
H3 =

3

2
gsM

1

r
dr ∧ ω2 F3 =

M

2
ω3 , (3.9)

where we define

ω2 =
1

2
(sin θ1 dθ1 ∧ dϕ1 − sin θ2 dθ2 ∧ dϕ2)

ω3 = g5 ∧ ω2 =
1

2
(dψ +

∑
j cos θj dϕj) ∧ (sin θ1 dθ1 ∧ dϕ1 − sin θ2 dθ2 ∧ dϕ2)

ω5 = −2ω2 ∧ ω2 ∧ g5 = sin θ1 dθ1 ∧ dϕ1 ∧ sin θ2 dθ2 ∧ dϕ2 ∧ g5

g5 = (dψ +
∑

j cos θj dϕj) .

(3.10)

The 3-form fluxes are such that gs ∗6 F3 = H3.

In this case the pull-back of H3 on the D7-brane is non-zero, and since dF = Ĥ3 we

are forced to consider a non-trivial gauge flux. Thus I will use again for F the (1, 1) ansatz

of (3.5) and impose that

dF = Ĥ3 Ĵ ∧ F = 0 . (3.11)

4This is consistent with the fact that on D3-brane backgrounds a self-dual bundle cannot be supersym-

metric as it carries anti-D3 charge. Without D3-branes, instead, the warp factor is constant.
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The solution is

FASD =

(
9gsM

4

1

r2
+
C1

r4

)(
1

3
r dr ∧ ĝ5 +

1

6
r2 sin θ1 dθ1 ∧ dϕ1

)
, (3.12)

with C1 an arbitrary constant. This flux is anti-self-dual. Notice that the homogeneous

solution is exactly FASD of (3.6).

Also in this case we could find a self-dual gauge flux with still dF = Ĥ3:

FSD =
(9gsM

4

1

r2
+ C2

)(1

3
r dr ∧ ĝ5 − 1

6
r2 sin θ1 dθ1 ∧ dϕ1

)
. (3.13)

Again this configuration is not supersymmetric.

4. Type IIB supergravity with sources

In the previous section we understood that the Klebanov-Tseytlin background supports

probe D7-branes which are spacetime-filling, non-compact, supersymmetric and along the

embeddings we need to realize the chiral cascading field theory we are interested in. Such

branes, in order to be SUSY, need to have a non-trivial anti-self-dual gauge flux F on

them. We are going to construct a fully backreacted solution for this system; thus I report

how the Type IIB Supergravity equations of motion (EOM) are modified in presence of

these sources.

The action of IIB Supergravity with D7-branes in Einstein frame is in my conventions:

SIIB =
1

2κ2
10

∫
d10x

√−g
{
R− 1

2
|∂φ|2 − 1

2
e−φ|H3|2 −

1

2
e2φ|F1|2 −

1

2
eφ|F3|2 −

1

4
|F5|2

}

− 1

4κ2
10

∫
C4 ∧H3 ∧ F3

− µ7

∫

D7
d8ξ eφ

√
− det(ĝ + e−φ/2 F) + µ7

∫
Ĉq e

−F

(4.1)

where the gauge invariant R-R field strengths are Fp = dCp−1 − Cp−3 ∧ H3.
5 Moreover

2κ2
10 = (2π)7α′4, µp = (2π)−pα′− p+1

2 is the Dp-brane charge and tension so that 2κ2
10µp =

(4π2α′)
7−p
2 . In particular 2κ2

10µ7 = 1. Hatted quantities are pulled-back.

Without sources (the last line) the Bianchi identities (BI) and EOM’s for the form-

fields are readily derived:

dF1 = 0

dF3 = H3 ∧ F1

dF5 = H3 ∧ F3

dH3 = 0

d
(
e2φ ∗ F1

)
= −eφH3 ∧ ∗F3

d
(
eφ ∗ F3

)
= −H3 ∧ F5

d ∗ F5 = dF5 = H3 ∧ F3

d
(
e−φ ∗H3

)
= eφ F1 ∧ ∗F3 − F5 ∧ F3 .

(4.2)

These have to be supplemented with the equation F5 = ∗F5, which is not derived from

the action (see [30] for a solution to this problem). Notice that these BI’s and EOM’s are

5The minus sign in e
−F is related to the sign in the definition of Fp and is required in order to obtain

EOM’s consistent with d
2 = 0.
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consistent with d2 = 0. By comparing the EOM’s with the BI’s of the dual field strengths

we get the relations

F7 = −eφ ∗ F3 F9 = e2φ ∗ F1 . (4.3)

Then we consider the effect of sources. The details of the derivation of the following

Bianchi identities and equations of motion, as long as other formulae useful in computa-

tions, can be found in appendix B. I find:

dF1 = −Ω2 d
(
e2φ ∗ F1

)
= −eφH3 ∧ ∗F3 −

1

24
F4 ∧ Ω2

dF3 = H3 ∧ F1 −F ∧ Ω2 d
(
eφ ∗ F3

)
= −H3 ∧ F5 +

1

6
F3 ∧ Ω2

dF5 = H3 ∧ F3 −
1

2
F ∧ F ∧ Ω2 d ∗ F5 = dF5

dH3 = 0 d
(
e−φ ∗H3

)
= eφ F1 ∧ ∗F3 − F5 ∧ F3 + (sources) .

(4.4)

The 2-form Ω2 is a localized form orthogonal to the D7-brane such that

∫

D7
X8 =

∫

M10

X8 ∧ Ω2 (4.5)

for every 8-form X8 on the D7-brane. For an holomorphic embedding C = {f(zj) = 0}
the form can be written as Ω2 = −i δ2(f, f̄) df ∧ df̄ . Thus in general for localized (and

even smeared) holomorphic D7-branes Ω2 is a closed real (1, 1)-form. Moreover it must be

exact in order to solve the BI of F1, and this condition is precisely tadpole cancellation.

The equation of motion of H3 gets many contributions from the D7’s and the complete

expression can be found in appendix B. Notice again that the full system of equations is

consistent with d2 = 0.

In appendix B the reader can also find a proof that the κ-symmetry condition (3.4)

together with supersymmetry in the bulk assure that the EOM for the gauge connection

on the D7-brane is satisfied. This was also shown on more general ground in [31]. On

the other hand in [32] it was shown that supersymmetry and Bianchi identities implies the

satisfaction of the EOM’s for the form-fields, for the dilaton and of Einstein equation, for

localized as well as smeared backreacting branes.

5. The backreacted solution

We have now collected enough elements to write down the backreacted solution. From

the probe analysis we learned that the D7-branes source D7-charge as well as D5- and

D3-charge, due to the non-trivial gauge flux F on them. The gauge invariant flux F is

constrained to be (1, 1) and primitive. Then we only have to produce an ansatz and set

to zero the supersymmetry variations in the bulk, as well as imposing BI’s and EOM’s for

the form-fields.

As observed in many previous works of this kind [20 – 24], finding the fully backreacted

solution for a system with color and flavor branes on a topologically non-trivial manifold
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is a very challenging task, due to the low amount of symmetry. In general, and in our case

too, the addition of non-compact D7-branes breaks some symmetries of the background

where they are put; consequently one should write a complicated ansatz which would lead

to partial differential equations, difficult or impossible to solve. My main tool will be an

angular smearing.

The procedure is the same as in [20 – 24]. Our D7-branes are put along Σ1 = {θ1, ϕ1 =

const} and Σ2 = {θ2, ϕ2 = const}: each branch is localized at a point of one of the S2

over which the T 1,1 fibration is constructed. A single D7-brane breaks the SU(2)2 × U(1)

isometry of the conifold to U(1)3. Since we are going to put a large number of flavor branes

and the preserved Killing spinors are independent from the particular point chosen, we put

each brane at a different location restoring the original SU(2)2×U(1) isometry. The ansatz

we propose will thus have this same isometry group. The smeared charge distribution for

Nf D7-branes, each made of two branches, is ([23])

Ω2 =
Nf

4π
(sin θ1 dθ1 ∧ dϕ1 + sin θ2 dθ2 ∧ dϕ2) . (5.1)

The metric ansatz is

ds2 = h(ρ)−
1

2 dx2
3,1 + h(ρ)

1

2 ds26

ds26 = e2u(ρ)

(
dρ2 +

1

9
(dψ +

∑
j cos θj dϕj)

2

)
+ e2g(ρ)

1

6

∑
j

(
dθ2
j + sin2 θj dϕ

2
j

) (5.2)

which depends on three unknown functions u(ρ), g(ρ) and h(ρ). Led by the Bianchi identity

dF1 = −Ω2 we put

F1 =
Nf

4π
g5 . (5.3)

The ansatz for B2 is as in the KT solution, because D7-branes do not source any F1-charge:

B2 =

(
M

2
f(ρ) + π b

(0)
2

)
ω2 (5.4)

H3 =
M

2
f ′(ρ) dρ ∧ ω2 . (5.5)

We put a constant shift in B2 for later convenience. Our solution will have limρ→−∞ f(ρ) =

0, so that b
(0)
2 represents the constant value in the far IR. We will see in section 8.1 which

is the meaning of the constant M .

In order to compute the gauge flux on a single D7-brane we need the 6d unwarped

Kähler form:

J6 =
1

3
e2udρ ∧ g5 − 1

6
e2g(sin θ1 dθ1 ∧ dϕ1 + sin θ2 dθ2 ∧ dϕ2) . (5.6)

which is directly derived from the metric. Then we can write the gauge flux F on each

brane. It must satisfy dF = Ĥ3 and, in order to preserve κ-symmetry, it must be real

(1, 1) and primitive (F ∧ Ĵ = 0). Let me start considering the branch Σ2. The κ-symmetry

constraints are easily encoded in the ansatz

F
∣∣∣
Σ2

= p(ρ)

[
1

3
e2udρ ∧ ĝ5 +

1

6
e2g sin θ1 dθ1 ∧ dϕ1

]
, (5.7)
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which is also consistent with the SU(2) × SU(2) symmetry of the field theory. Then the

relation dF = Ĥ3 gives the following equation:

M

4
f ′(ρ) =

1

3
e2u(ρ)p(ρ) +

1

6

∂

∂ρ

(
e2g(ρ)p(ρ)

)
. (5.8)

On the other branch Σ1 the gauge flux is the same but with opposite sign, namely:

F
∣∣∣
Σ1

= −p(ρ)
[
1

3
e2udρ ∧ ĝ5 +

1

6
e2g sin θ2 dθ2 ∧ dϕ2

]
(5.9)

with the same function p(ρ) as before.

I conclude the ansatz with an expression of F3 which automatically solves its Bianchi

identity dF3 = H3 ∧ F1 − F ∧ Ω2. Here we have to put some care in the computation of

the effect of the smearing on F ∧ Ω2, starting from the localized expressions for the two

branches. For each branch, the localized charge distribution is a sum of delta functions at

the different locations of the Nf branes on the sphere: Ωloc
2 =

∑Nf
a=1 δ

(2)(θj − θ
(a)
j , ϕj −

ϕ
(a)
j ) dθj ∧ dϕj . Here θ

(a)
j and ϕ

(a)
j are the coordinates of the a-th brane, branch j. In

the smearing we substitute such sum of delta functions with the homogeneous distribution

Ωsmeared
2 =

Nf
4π sin θj dθj ∧ dϕj . We simply have to repeat the same procedure for F ∧ Ω2:

F (Σj ) ∧ Ω
(Σj)
2 = F (Σj) ∧ δ(2)(θj, φj) dθj ∧ dϕj → F (Σj) ∧ Nf

4π
sin θj dθj ∧ dϕj (5.10)

Summing the contributions from the two branches, we eventually get:

(F ∧ Ω2)
smeared = −Nf

6π
e2up(ρ) dρ ∧ g5 ∧ ω2 . (5.11)

Here it is worth stressing a subtle point. Naively one could have thought that since

H3 ∧Ωsmeared
2 = 0 then there is no pull-back of H3 on the smeared configuration of branes,

and thus it is consistent to put their gauge flux to zero. But, as we saw, this is not

actually correct. What is correct is computing the flux on a single (probe) brane, then

evaluate F ∧ Ωloc
2 and smear the latter. The content of H3 ∧ Ωsmeared

2 = 0 is that, in fact,

d(F ∧ Ω2)
smeared = H3 ∧ Ωsmeared

2 = 0.

Eventually, using equation (5.8) we obtain

H3 ∧ F1 − (F ∧ Ω2)
smeared =

MNf

8π

∂

∂ρ

[
f + f − 2

3M
e2gp

]
dρ ∧ g5 ∧ ω2 . (5.12)

It is nice to observe that H3∧F1 contributes f in brackets while (F∧Ω2)
smeared contributes

the other f . This doubling with respect to the non-chiral case discussed in [24] (where the

term (F ∧ Ω2)
smeared is not present) is dual in field theory to the fact that in the chiral

theory the difference of gauge ranks gets reduced by Nf at each step of the cascade, while

in the non-chiral theory it scales by Nf/2.

The ansatz for F3 is then

F3 =
M

2

[
Nf

2π
f − Nf

6πM
e2gp

]
g5 ∧ ω2 . (5.13)
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Notice that we should have allowed an integration constant C in brackets; this constant

can be absorbed in a redefinition of f(ρ) and then appears in B2, as we accordingly took

into account.

For completeness I report the expression of the gauge field strength and connection on

the branes, as derived from the definition F = B̂2 + 2πF2 and equation (5.8):

2πF2

∣∣∣
Σ2

=
1

3
e2up dρ ∧ ĝ5 +

(
1

6
e2gp− M

4
f − π

2
b
(0)
2

)
sin θ1 dθ1 ∧ dϕ1 (5.14)

2πA
∣∣∣
Σ2

=

(
M

4
f − 1

6
e2gp+

π

2
b
(0)
2

)
ĝ5 . (5.15)

The expressions on Σ1 are the same but with opposite sign.

Now that the ansatz is complete we can solve it. We impose that the supersymmetry

variations vanish. The details of the computation can be found in appendix C. We find

that the equations for the 3-form flux decouple from the other ones, that can be solved

first. Being the ansatz the same as in [23], the equations and their solutions are also the

same. We find the system 




φ′ =
3Nf

4π
eφ

g′ = e2u−2g

u′ = 3 − 2e2u−2g − 3Nf

8π
eφ

(5.16)

which can be (explicitly) integrated first. Its solution is (I suppress many integration

constants; for a general discussion see [23]):

eφ =
4π

3Nf

1

(−ρ)
e2u = −6ρ(1 − 6ρ)−2/3 e2ρ

e2g = (1 − 6ρ)1/3 e2ρ .
(5.17)

The range of the radial coordinate is ρ ∈ (−∞, 0]; ρ = −∞ corresponds to the IR while

ρ = 0 is an UV duality wall. The equations for the 3-form flux impose that the combination

G3 ≡ F3 − i e−φH3 is imaginary-self-dual, that is eφ ∗6 F3 = H3. Notice that it is also

primitive by construction. We get

eφ
3M

4

[
Nf

2π
f − Nf

6πM
e2gp

]
=
M

4
f ′ . (5.18)

The equations for the gauge flux (5.8) and the 3-form flux (5.18) can be rewritten in

terms of p̃ ≡ e2gp and f̃ ≡ e−2φf . We write the second one and their difference:






p̃ = −2πM

Nf
eφ f̃ ′

2

3M

[
2 e2u−2g p̃+ p̃′

]
= eφ

[
3Nf

2π
e2φ f̃ − Nf

2πM
p̃

]
.

(5.19)

Substituting the first into the second we get a second order linear ODE:

f̃ ′′ + 2

(
3Nf

4π
eφ + e2u−2g

)
f̃ ′ + 2

(
3Nf

4π

)2

e2φ f̃ = 0 , (5.20)
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where we could also substitute the actual profile of the functions. The equation can be

analytically integrated. Let me remark the dependence of the functions on M and Nf

before: if we take f of order one then f̃ is of order N2
f and p̃ is of order M .

The author of [15] tackles the same problem as here: the addition of D7-branes to the

Klebanov-Tseytlin background. He computes the effect of the branes at leading order in

Nf/M as a perturbation of the original background. Since his procedure is quite different

from mine, I comment on this in appendix D.

6. Solutions

Equation (5.20) is a second order linear ODE, so there is a two dimensional vector space

of solutions. The first solution is

f =
(1 − 6ρ)2/3

−ρ e−2ρ

p̃ =
3M

2

12ρ2 − 12ρ+ 1

(−ρ)(1 − 6ρ)1/3
e−2ρ

p =
3M

2

12ρ2 − 12ρ+ 1

(−ρ)(1 − 6ρ)2/3
e−4ρ . (6.1)

Actually this is not the solution physically relevant for us, because both the 3-form flux

and the gauge flux diverge in the IR (while we would like them to vanish, according to

the field theory discussion). Nevertheless we can notice some interesting features. In the

IR (large |ρ|) the function f is suppressed by 1/(−ρ) with respect to p̃/M ; thus the gauge

bundle dominates over the 3-form flux and determines the IR physics. In fact using the

approximate IR relation log ρ = r we get the ASD solution (3.6) in the KW background.

The second solution is expressed in terms of the En(z) function6 defined as

En(z) =

∫ ∞

1

e−z t

tn
dt =

∫ 1

0
e
− z
η ηn−2dη . (6.2)

For completeness here are some of its properties:

∂zEn(z) = −En−1(z) nEn+1(z) = e−z − z En(z) (6.3)

and the series expansions around z → 0 and z → ∞:

z → 0 : En(z) = zn−1Γ(1 − n) +
∞∑

j=0

(−1)j+1

j!(j + 1 − n)
zj

z → ∞ : En(z) =
e−z

z

[
∞∑

j=0

(−1)j
Γ(n+ j)

Γ(n)

1

zj

]
=
e−z

z
+ O

(
e−z

z2

)
.

(6.4)

The solution is:

f =
1

(−ρ)

[
3 − (1 − 6ρ) e

1

3
−2ρE2/3

(
1

3
− 2ρ

)]

p̃ =
3M

2

1

(−ρ)

[
3 − 6ρ− (12ρ2 − 12ρ+ 1) e

1

3
−2ρE2/3

(
1

3
− 2ρ

)]

p =
3M

2

e−2ρ

(−ρ)(1 − 6ρ)1/3

[
3 − 6ρ− (12ρ2 − 12ρ+ 1) e

1

3
−2ρE2/3

(
1

3
− 2ρ

)]
.

(6.5)

6In Mathematica is called ExpIntegralE.
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Figure 4: Plot of some relevant functions: f(ρ), 2p̃(ρ)/3M , 2p(ρ)/3M and NΦ(ρ).

The expansions of f(ρ) and p̃(ρ) around ρ→ −∞ (IR) and ρ→ 0− (UV) are:

IR :

f =
1

ρ2
+

1

ρ3
+

17

12

1

ρ4
+ O

(
1

ρ5

)

p̃ =
3M

2

{
− 1

ρ3
− 17

6

1

ρ4
+ O

(
1

ρ5

)}

UV :

f = −α
ρ
− 6(2 − α) − 6α ρ+ O(ρ2)

p̃ =
3M

2

{
−α
ρ
− 12(2 − α) − 18α ρ+ O(ρ2)

}

(6.6)

with α = 3 − e1/3E2/3(1/3) ≃ 1.48. The plots of all these functions are in figure 4.

In this case, in the IR the function p̃/M is negligible with respect to f , and the

solution asymptotes the non-homogeneous piece of the ASD probe solution (3.12) in the

KT background.

6.1 5-form flux and warp factor

The ansatz for the self-dual 5-form flux is related to the warp factor in the usual way. This

is imposed by supersymmetry in the bulk, and we set:

F5 = (1 + ∗) d4x ∧ dh−1 = d4x ∧ dh−1 +
h′e4g

108
ω5 (6.7)

with ω5 defined in (3.10). We solve the Bianchi identity dF5 = H3 ∧ F3 − 1
2F ∧ F ∧ Ω2.

The first term is readily computed. In order to evaluate (F ∧F ∧Ω2)
smeared we proceed as

before: we first compute the localized expressions for the two branches and then we sum

them, obtaining:

(
− 1

2F ∧ F ∧ Ω2

)smeared
= − Nf

36π
p2 e2u+2g dρ ∧ ω5 . (6.8)
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Combining the two pieces we get the second order equation:

∂

∂ρ

(
h′ e4g

108

)
= −M

2Nf

16π
f ′

(
f − 1

3M
p̃

)
− Nf

36π
p2 e2u+2g . (6.9)

As we expect from supersymmetry, this equation can be integrated to a first order

equation. Making use of the BPS equation (5.8) we get:

h′ e4g

108
= −π

4
N0 −

M2Nf

32π
f2 +

Nf

144π
p̃2 . (6.10)

Here N0 is an integration constant. This expression also fixes the effective D3-charge, and

N0 represents the D3-charge in the far IR.

The warp factor is obtained by integration. Thus:

h(ρ) =

∫ ρ

∞

108 e−4g(x)

{
−π

4
N0 −

M2Nf

32π

[
f(x)2 − 1

2

(
2p̃(x)

3M

)2]}
dx (6.11)

As in [23, 24] the integration constant is chosen such that the analytic continuation of h

at plus infinity vanishes. This expression cannot be analytically integrated, but we can

provide the expansions in the IR and the UV. We find:

IR : h = 27πN0
e−4ρ

(−6ρ)2/3

[
1 + O

(
1

ρ

)]

UV : h = − 27

16π
M2Nf

α2

(−ρ) [1 + O(ρ)]

(6.12)

In the IR we recognize the almost conformal behavior of the flavored KW solution [23]. In

the UV the warp factor diverges to negative values, signaling that at some ρ < 0 it becomes

zero and the supergravity description breaks down, as in the UV region of the KS and KT

solutions flavored with non-chiral fundamental matter [24].

From figure 4 and the plot of p, one could think that the worldvolume flux diverges

in the IR, invalidating the solution. Instead what matters is the modulus |F|2 computed

with the full 10d metric, including the warp factor. One gets in the IR:

IR : |F|2 = 2
p2

h
=

M2

6πN0

1

(−ρ)6 + O
(

1

ρ7

)
. (6.13)

Thus the flux vanishes and its energy is integrable in the IR.

7. Charges in supergravity

We go on with the analysis of the solutions just found. My main goal in this section is to

match the cascade and the running of gauge ranks between supergravity and field theory.

The way I proceed is similar to the analysis performed in [24]. We start computing Maxwell

charges, defined as the integral of the corresponding R-R fluxes:

ND3 = − 1

(4π2α′)2

∫

C5

F5 ND7 = −
∫

C1

F1

ND5 =
1

4π2α′

∫

C3

F3 .

(7.1)
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For sign conventions see appendix B, and we again set α′ = 1.

The integration is done on the 3-cycle S3 = {θ2, ϕ2 = const} in T 1,1 and on the whole

T 1,1 respectively. We compute the integral of B2 on the 2-cycle S2 = {θ1 = θ2, ϕ1 = −ϕ2}
as well, obtaining:

Meff =
1

4π2

∫

S3

F3 =
MNf

2π

(
f − 1

3M
p̃
)

Neff = − 1

16π4

∫

T 1,1

F5 = N0 +
M2Nf

8π2
f2 − Nf

36π2
p̃2

b0 =
1

4π2

∫

S2

B2 =
M

2π
f + b

(0)
2 .

(7.2)

The integral b0 is an axionic field defined modulo 1. Shifting it by 1 does not affect

physical quantities; nonetheless it corresponds to a Seiberg duality [8]. We can understand

the cascade by following b0: everytime we lower the radial coordinate (and thus we lower

the energy scale) such that b0 → b0 − 1, we have descent one step of the cascade. Then we

can look at the shift of Maxwell charges in this process.

In our solution the functions are such that in the IR we can neglect p̃/M with respect

to f . Then in one cascade step we experience:

f (i) → f (i−1) = f (i) − 2π

M
⇒

M
(i)
eff →M

(i−1)
eff ≃M

(i)
eff −Nf

N
(i)
eff → N

(i−i)
eff ≃ N

(i)
eff −M

(i)
eff +

Nf

2
.

(7.3)

Here i is an integer that counts the number of Seiberg dualities from the bottom up.

Without taking the IR limit, both Meff (ρ), Neff(ρ) and b0(ρ) are positive monotonically

increasing functions, of which I give the IR and UV expansions:

IR :

Meff =
MNf

2π

1

ρ2
+ O

(
1

ρ3

)

Neff −N0 =
M2Nf

8π2

1

ρ4
+ O

(
1

ρ5

) UV :

Meff =
MNf

2π

α

2(−ρ) + O(ρ)

Neff −N0 =
M2Nf

8π2

α2

2ρ2
+ O

(
1

ρ

)

(7.4)

These formulae are not satisfactory at all. First of all they are only approximate;

moreover in the UV the functions f and p̃ are of the same order giving a very different

result, and in the middle there in no clear pattern. The reason is that we are looking

at the wrong objects. As fully explained in [24], Maxwell charges are gauge invariant and

conserved, but are not quantized nor localized: they gain contributions from the whole bulk

and from the charges induced on the D7-branes. Thus they are not suitable for identifying

gauge ranks. The correct objects to look at are Page charges: they are quantized and

localized on the D3 and D5-branes that source them (they are not even sourced by the

induced charges on the D7’s). On the other hand they are not invariant under large

gauge transformations. These ones, which are quantized themselves, precisely correspond

to Seiberg dualities and we expect Page charges to change accordingly.
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7.1 Chiral zero modes

Before going on with the computation of Page charges, I want to give a physical explana-

tion of the origin of the chiral gauge singlet fields Φj transforming in the (Nf , Nf ) flavor

representation. For this, we need to do a little digression.

Consider the following brane configuration: put two stacks of Nf spacetime filling

intersecting D7-branes on M3,1 × T 6 (I am interested in the local physics, so I neglect

tadpole cancellation issues). Each stack wraps a T 4 in T 6 and they intersect along a T 2

(times Minkowski spacetime). The theory at the intersection is an N = 1 6d chiral gauge

theory with 8 supercharges, gauge group U(Nf )×U(Nf ) and bifundamental chiral matter.

Of course, when compactified to 4d, the theory is N = 2 non-chiral. Moreover in the

decompactification limit and from a 4d point of view, the whole theory gets frozen (being

higher dimensional).

The situation is different if we put some (supersymmetric) gauge flux on the D7-branes.

The number of supercharges is reduced to 4, signaling that a 4d dynamics is taking place.

This is in fact the case, as the system is T-dual to D6-branes in Type IIA intersecting at

angles. Due to the non-trivial flux F2 in IIB, the D6-branes intersect at non-right angles

on all of the six directions; the intersection is four dimensional and 4d chiral modes arise

there, transforming in the bifundamental representation. The honest computation in IIB

was performed in [36] (actually in the context of magnetized D9-branes). The net effect

of the flux, which is pulled-back to the intersection, is to twist the Dirac operator so that

there are a number of zero modes. This number is given by the difference between the

fluxes on the stacks:

NΦ =
1

2π

∫

T 2

(F
(A)
2 − F

(B)
2 ) . (7.5)

In [36] it was also shown that the zero modes are localized at a point in the 6d intersec-

tion, developing a 4d identity. This obviously corresponds to the intersection being four

dimensional in IIA. Moreover, in the decompactification limit the gauge theory decouples

but the zero modes preserve their 4d essence. As the fluxes on the D7’s are quantized so

is the number of zero modes, which corresponds to the number of intersections in IIA.

In our setup we have a very similar situation. We have two stacks of D7-branes7 which

intersect along an holomorphic submanifold of complex dimension 1 and with topology

of C∗. On the branes there are opposite gauge fluxes, which I expect giving rise to chiral

zero modes with 4d dynamics and transforming in the (Nf , Nf ) representation of the flavor

group. Unfortunately the intersection is non-compact thus an equally clean derivation is not

possible. Nevertheless, in our supersymmetric setup (where charges are equal to masses

so that they always sum and never cancel together) we can interpret F2 as providing a

density of zero modes. This means that integrating F2 on a region we get the number of

zero modes originating from there.8

7After the smearing all the branes in a stack are separated, that means that the gauge theory on them

is in the Coulomb phase and U(Nf ) is broken to U(1)Nf . This does not change the conclusion.
8The actual position of the zero modes is encoded in the Wilson lines of the gauge connection. So in

principle the zero modes could be everywhere, not necessarily in the region we are considering.
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We take the gauge field strength in our solution (5.14) and pull-back F
(Σ2)
2 −F

(Σ1)
2 on

the intersection Π = Σ1 ∩ Σ2. We get:

2πFint ≡ (2πF
(Σ2)
2 − 2πF

(Σ1)
2 )

∣∣∣
Π

=
2

3
e2up(ρ) dρ ∧ dψ . (7.6)

Notice that in the far IR the gauge field strength on the branes goes to zero, confirming that

the IR field theory does not have extra gauge singlet fields. Then we produce a function

that counts the number of zero modes from the far IR ρ = −∞ to some energy scale ρ by

integrating the gauge field strength Fint on the intersection Π up to the radius ρ:

NΦ(ρ) =
1

4π2

∫

Π[−∞,ρ]
2πFint =

M

2π
f(ρ) − 1

3π
p̃(ρ) (7.7)

Now we can perform an IR analysis in the region |ρ| ≫ 1. Neglecting the function

p̃/M with respect to f , in the shift f(ρ) → f(ρ− ∆ρ) = f(ρ) − 2π/M which corresponds

to one Seiberg duality towards the IR we have a shift

NΦ(ρ) → NΦ(ρ− ∆ρ) ≃ NΦ(ρ) − 1 . (7.8)

This result confirms that, at least in the IR, in each Seiberg duality we lose one chiral zero

mode Φ in the bifundamental flavor representation.

It would be nice to give an interpretation to the scaling of NΦ in the UV. Moreover it

would be interesting to give a more rigorous counting of the zero modes contained in the

throat up to some radius (energy scale) r0; a possible solution could be appealing to the

index theorem with boundary.9 I leave these issues for future investigations.

7.2 Page charges

Page dual currents [37] can be obtained by writing the Bianchi identities with sources as

total differentials. The only terms that cannot be written in this way are the source delta

functions corresponding to the D3 and fractional D3-branes at the tip of the conifold that

produce our background, and that are replaced by their fluxes in the geometric transition.

In particular the Page charges obtained by integration do not get contributions from the

bulk nor from the induced charges on the D7-branes, are independent of the radial coor-

dinate where we measure them and are quantized, making them very suitable to measure

gauge ranks.

In general b0 takes in the far IR some limiting value b
(0)
2 , that we conventionally

choose in the range b
(0)
2 ∈ [0, 1]. This range is special because it returns us positive

square gauge couplings when exploiting usual formulae [38]. Then, moving towards the

UV, b0 starts growing, ending up out of that range at a generic energy scale. We could

say that the field theory is still the one of the IR, but such a description is not useful

because the gauge couplings have grown diverging and then becoming imaginary. Thus

we had better shift b0 by −n units bringing it back to the range [0, 1]; this process is a

large gauge transformation or a Seiberg duality. We end up with a new equivalent field

9I thank B. Acharya and G. Shiu for this suggestion.
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theory description, with different gauge ranks but real positive gauge couplings. In this

way making large gauge transformations at a fixed energy scale (which changes the Page

charges) is a way of understanding the cascade.

Our Page dual currents are

∗jPage
D5 = F3 −B2 ∧ F1 + 2πA ∧ Ω2 (7.9)

− ∗ jPage
D3 = F5 −B2 ∧ F3 +

1

2
B2 ∧B2 ∧ F1 +

1

2
2πA ∧ 2πdA ∧ Ω2 . (7.10)

One can check they are in fact closed forms. Page charges are obtained by integrating their

differentials:

QPage
D5 =

1

4π2α′

∫

V4

d ∗ jPage
D5

QPage
D3 =

1

(4π2α′)2

∫

V6

d ∗ jPage
D3 ,

(7.11)

where V4 and V6 are bounded by S3 and T 1,1. Using Stoke’s theorem we eventually get:

QPage
D5 =

1

4π2α′

∫

S3

(
F3 −B2 ∧ F1 + 2πA ∧ Ω2

)

QPage
D3 = − 1

(4π2α′)2

∫

T 1,1

(
F5 −B2 ∧ F3 +

1

2
B2 ∧B2 ∧ F1 +

1

2
2πA ∧ 2πdA ∧ Ω2

)
.

(7.12)

We compute the Page charges of our solution. Some care is needed in the evaluation

of the smeared forms (see the discussion at page 14). One gets

QPage
D5 = −Nf b

(0)
2

QPage
D3 = N0 +

Nf

2
(b

(0)
2 )2 .

(7.13)

After identifying a dictionary between supergravity and field theory, we will match these

charges with the IR of the theory.

Then I am interested in how these quantities change under a large gauge transformation

of B2. We perform B2 → B2 + ∆B2 with

∆B2 = −nπ ω2 n ∈ Z . (7.14)

It is a gauge transformation because ∆H3 = 0 and 1
4π2

∫
S2 ∆B2 = −n (n identifying the

number of Seiberg dualities) and is large because ∆B2 is not an exact form. A shift of B2

must be accompanied by a shift of the gauge connection A on the branes, since F is the

gauge invariant quantity. Thus 2πd∆A = −∆B̂2. We find

2πd∆A
∣∣∣
Σ2

= n
π

2
sin θ1 dθ1 ∧ dϕ1 2π∆A

∣∣∣
Σ2

= −nπ
2
ĝ5 . (7.15)

The variations on Σ1 are the same but with opposite sign.

The variation of the D5 Page charge is readily obtained: ∆QPage
D5 = nNf . In the com-

putation of the D3-charge I imagine having already shifted B2 by m units, so that we use:

B2 =

(
M

2
f + (b

(0)
2 −m)π

)
ω2 2πA

∣∣∣
Σ2

=

(
M

4
f − 1

6
p̃+

π

2
(b

(0)
2 −m)

)
ĝ5 . (7.16)
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After some algebra we get

∆QPage
D3 = n (m− b

(0)
2 )Nf + n2Nf

2
. (7.17)

Notice that the first piece is the D5-charge before the shift.

We can summarize here the result:





∆QPage
D5 = nNf

∆QPage
D3 = nQPage

D5 + n2 Nf

2
.

(7.18)

The formula is consistent with subsequent shifts and with (7.13). The case n = −1 corre-

sponds to one Seiberg duality towards the IR. Notice that it gives the same approximate

IR result derived with Maxwell charges. Anyway Page charges give us an exact and much

cleaner result.

Unfortunately I was not able to find a kind of Page charge to measure the number

of chiral zero modes. Let me just notice that the quantity NΦ does not change under the

large gauge transformations we considered. I leave this problem for the future.

8. Brane engineering

In this section I engineer the effective field theory at some energy scale with probe branes

on the singular conifold, and compute the charges generated by such a configuration. In

this way one can construct a dictionary between the supergravity (Page) charges and the

field theory ranks. Initially the goal is to construct a generic theory with gauge group

SU(g1) × SU(g2) (g1 ≥ g2), flavor group U(Nf ) × U(Nf ) and k gauge singlet fields in the

(Nf , Nf ) flavor representation. As we will see this is not easy, and we will restrict to the

class of non-anomalous theories. Nonetheless this is enough to understand the cascade.

The gauge theory is realized as the near horizon theory on a stack of fractional D3-

branes, which can be thought as D5-branes wrapped on the 2-cycle of T 1,1 and possibly

with gauge flux on them. The computation is as in [18, 24]. The Wess-Zumino action for

a D5-brane with flux is

SD5 = µ5

∫

M3,1×S2

[
Ĉ6 − (B̂2 + 2πF2) ∧ Ĉ4

]
. (8.1)

We consider a flat background value for B2 proportional to ω2, and F2 can be expanded

on the pull-back of ω2 on the brane:

B2 = πb0 ω2 2πF2 = πφ0 ω̂2 , (8.2)

so that 1
4π2

∫
S2 B2 = b0 and 1

4π2

∫
S2 2πF2 = φ0. The gauge bundle is quantized according

to φ0 ∈ Z. We read that the D5-charge is 1 and the D3-charge is −(b0 + φ0). For an

anti-D5-brane the charges are the opposite: D5-charge −1 and D3-charge (b0 + φ0). The

gauge theory of interest is realized with g1 D5-branes and g2 anti-D5’s with one unit of

flux. The charges are summarized in table 2.
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Then we consider the case of a D7-brane without flux, with one branch along Σ1 =

{θ1, ϕ1 = const} and one along Σ2 = {θ2, ϕ2 = const}. The Wess-Zumino action is:

SD7 = µ7

∫

M3,1×Σ

[
C8 − (B̂2 + 2πF2) ∧C6 +

1

2
(B̂2 + 2πF2)

2 ∧C4 −
π4

3
p1(R) ∧C4

]
. (8.3)

The topology of the branches in the singular conifold is C2 \{0} because they pass through

the singularity and a resolution is needed in order to understand the physics. In the

resolution of the conifold one branch participate to the blowing up of the 2-cycle, giving

rise to Ĉ2 (C2 blown up at a point), while the other one is not modified and only touches

the exceptional cycle at a point (see appendix E). Which one of the branches is blown up

is reversed by a flop transition, anyway the physics does not depend on this choice.

The case without flux is the one considered in [23], and the case we expect to be

realized in the far IR of our solution. Even if we are not putting flux on the brane, we

cannot just take F2 = 0 because the pull-back of B2 does not go to zero at infinity and one

would get an infinite induced charge. Thus we set an F2 that kills the tail of B̂2 at infinity

but has no flux on S2 (in the Ĉ2 case). The resulting F is zero on the C2 branch and is the

Poincaré dual to S2 on the Ĉ2 branch. The details of this computation are in appendix E.

I call σ2 the Poicaré dual to S2 on the Ĉ2 branch; it satisfies

∫

S2

α2 =

∫
α2 ∧ σ2

∫
σ2 ∧ σ2 = −#(S2, S2) = 1 (8.4)

for every (normalizable) closed 2-form α2. −1 is the self-intersection of S2 on Ĉ2.10 Thus

the gauge fluxes on the two branches are:

F
∣∣∣
C2

= 0 F
∣∣∣

cC2
= 4π2b0 σ2 . (8.5)

Then the two reduced actions are:

SD7(C
2) = µ7

∫

M3,1×C2

C8 + (curv)µ3

∫

M3,1

C4 (8.6)

SD7(Ĉ2) = µ7

∫

M3,1×
cC2

C8 − b0 µ5

∫

M3,1×S2

C6 +

[
b20
2

+ (curv)

]
µ3

∫

M3,1

C4 . (8.7)

The curvature couplings are computed in appendix E for completeness, even if they do not

play an important rôle. The induced charges can be immediately read from these expres-

sions, and are summarized in table 2. This result is in perfect agreement with the Page

charges (7.13) in the far IR, confirming that our theory flows to the flavored KW theory.

At this point we can readily obtain the charges sourced by a D7-brane with flux as

well. Obviously we can only put some F2 flux on the Ĉ2 branch, since the other one does

not have any 2-cycle. To add φ0 units of F2 flux on S2 we substitute b0 with (b0 + φ0) in

the expression of F . Again the result is in table 2.

10The minus sign in front of the intersection form comes from my conventions on the volume forms on Σ

and S
2, both inverted (see appendix A and E).
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frac D3(1) frac D3(2) D7Σ1 + D7Σ2

D3-charge −b0 1 + b0
1
2(b0 + φ0)

2 + (curv)

D5-charge 1 −1 −(b0 + φ0)

D7-charge 0 0 1+1

Number of objects g1 g2 Nf

Table 2: Effective charges for fractional D3-branes and D7-branes with flux.

One could think that the number φ0 of units of flux on the D7-branes corresponds to the

number NΦ of zero modes arising at the intersection, thus to the number of gauge singlets

in field theory. Actually this is not exact. The reason is that for generic values of the gauge

ranks and of the number of gauge singlets, the chiral flavor symmetry is anomalous. From

the gravity point of view, the action of the gauge theory living on the D7’s is not gauge-

invariant; the variation is a boundary term, and since the branes are non-compact this is

not an inconsistency and only represents an anomaly for a global symmetry in field theory.

There are two kinds of possible sources of anomaly. The first one arises as a would-be

tadpole on the D7-branes: since dF = Ĥ3, if the cohomology class of Ĥ3 on the 4-cycle is

non-vanishing there is a tadpole. In our case
∫
C3
H3 = 0 for every compact 3-submanifold

on the D7 worldvolume so that there are no tadpoles. The second one is precisely the

anomaly for the chiral flavor symmetry. It could be computed by performing a gauge

variation δA = dλ of the Wess-Zumino action for a D7-brane, along the lines of [44, 45]

and more recently [46]. An anomaly is seen as a non-vanishing variation of the boundary

term, so that the absence of f-f-f anomalies translates into δλSWZ = 0.

Thus suppose starting with a configuration of N0 D3-branes and Nf D7-branes without

flux, which is the non-anomalous flavored KW theory. We can put one unit of flux (φ0 =

−1) on each Ĉ2 branch of D7. This gives us a new non-anomalous configuration. From

table 2, the modification of the charges is that of the addition of Nf D5-branes wrapped

on S2 and a D3-charge of
Nf
2 . On the other hand, we know that a non-trivial cohomology

class 2πF2 for the D7 gauge bundle represents D5-branes dissolved (or even localized) into

the D7’s. In particular a flux on S2 represents D5-branes that wrap the 2-cycle.11 The

new non-anomalous theory is thus engineered by N0 D3-branes, Nf D5-branes and Nf

D7-branes, and being non-anomalous there must be one gauge singlet field. What we have

found is precisely our field theory at the first (from the bottom) step of the cascade.

This is a general pattern. Each unit of flux on the D7’s corresponds to the addition

of Nf fractional D3-branes (thus increasing the difference of the gauge ranks by Nf ), one

gauge singlet field to preserve the anomaly and a number of D3 branes. We will match this

pattern with the field theory cascade in the next section. If we want to isolate the charge

contribution of one gauge singlet field, it is just a D3-charge of
Nf
2 . In table 3 we report

this different counting of charges.

11Notice that since one of the D7 branches wraps the shrunk 2-cycle, the D5-branes wrapped on it must

necessarily lie inside the D7.
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frac D3(1) frac D3(2) D7Σ1 + D7Σ2 NΦ

D3-charge −b0 1 + b0
1
2b

2
0 + (curv)

Nf
2

D5-charge 1 −1 −b0 0

D7-charge 0 0 1+1 0

Number of objects g1 g2 Nf k

Table 3: Effective charges for fractional D3-branes, D7-branes without flux and NΦ gauge singlets.

8.1 The cascade

I conclude with the matching of the cascade between field theory and supergravity. We

consider at step (i) a theory with gauge group SU(g1) × SU(g2) (with g1 > g2), flavor

group U(Nf ) × U(Nf ) and k gauge singlet fields in the (Nf , Nf ) flavor representation. It

is realized with g1 fractional D3-branes of type one and g2 of type two. The Page charges

sourced by this configuration are (table 3):

M (i) = g1 − g2 − b0Nf

N (i) = −b0 g1 + (1 + b0)g2 +
b20
2

+
Nf

2
k + (curv) .

(8.8)

After one Seiberg duality towards the IR we have at step (i−1) a theory with gauge group

SU(g2)× SU(2g2 +Nf − g1), the same flavor group and k− 1 gauge singlet fields. The new

Page charges are:

M (i−1) = g2 − (2g2 +Nf − g1) − b0Nf

N (i−1) = −b0 g2 + (1 + b0)(2g2 +Nf − g1) +
b20
2

+
Nf

2
(k − 1) + (curv) .

(8.9)

Thus we verify that 




M (i−1) = M (i) −Nf

N (i−1) = N (i) −M (i) +
Nf

2
,

(8.10)

in perfect agreement with the supergravity computation (7.18).

The careful reader could wonder what is the rôle of the constant M in the supergravity

solution. In the field theory there is no rank controlled by it: in the IR the gauge ranks

are equal and controlled by N0; then, going towards the UV, at some energy scale they

start growing and the cascade is controlled by Nf . The parameter M does not enter, and

in fact it is not even quantized.

It turns out that M fixes the energy scale of the last (lower) Seiberg duality. This last

step (after which the theory does not cascade any more) takes place at a radius r0 such

that b0(r0) = 1
4π2

∫
S2 B2 is 1. Then, neglecting for clarity b

(0)
2 , one finds f(r0) = 2π/M .

The biggest is M , the smaller is the energy scale of the last Seiberg duality compared with

the duality wall scale, and the larger is the number of dualities contained in the weakly

coupled supergravity description.
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9. Conclusions

In this paper I presented a field theory obtained as a chiral flavoring of the Klebanov-

Tseytlin theory. The RG flow is understood as a cascade of Seiberg dualities in which

flavors actively participate, and new gauge singlet fields have to be taken into account.

Then I proposed a gravity dual, constructed by putting backreacting flavor D7-branes with

flux in a background. The existence of a gravity dual gives more sturdy ground to the

cascade, and allows us to predict the full non-perturbative RG flow.

The UV theory presents a duality wall as well as a Landau pole, as it happens in [24].

The fact that b0(ρ) diverges as approaching the Landau pole tells us that an infinite number

of Seiberg dualities would be necessary to reach a finite energy scale, and the number of

degrees of freedom diverges as well. Of course this has to be taken with a grain of salt as

the string coupling (and the gauge coupling) diverges as well. On the other side, along the

cascade the difference between the gauge ranks reduces going towards the IR. At some point

they get equal and there is no cascade any more. The string coupling always decreases,

which initially translates into both gauge groups having positive β-function and the gauge

couplings flowing towards zero. As explained in [23], at some point gsNf becomes small, the

flavor branes do not backreact any more and the gravity solution asymptotes the KW one

but with smaller and smaller string coupling. On the field theory side the gauge coupling

stops at some minimal value g∗ (the extremum of the line of conformal points, where

the quartic superpotential vanishes) and what still flows to zero is the flavor superpotential

coupling. Eventually the theory reaches a fixed superconformal point with flavors, vanishing

superpotential and gauge coupling g∗. This is badly described by supergravity.

There are a number of comments in order. Computing Maxwell D-brane charges and

Page charges, we discovered the first instance where they are not on the same footing:

the cascading of gauge ranks is perfectly described by Page charges but not by Maxwell

charges. It would be interesting to understand which is instead the physical information

encoded in Maxwell charges.

The flavoring of the KT cascade is interesting for another reason. When trying to gen-

eralize it to fractional branes at more generic conical singularities (see [39] for an example),

an IR problem arises: if there are no complex deformations the singularity cannot be re-

solved, the field theory presents a runaway behavior and/or it breaks supersymmetry [40].

The addition of flavor branes can cure this problem, as fractional branes can disappear in

the IR and the field theory still flows to a superconformal point. When trying to flavor

these theories with D7-branes one discovers that generically it is not possible to do it in the

non-chiral way of [24]. The flavors generically couple to operators with non-zero baryonic

numbers; on the gravity side, generically the pull-back of H3 on the 4-cycles is different

from zero. Thus the most general situation is the one exemplified in this paper.

For instance the authors of [25] used the last step of a cascade obtained by flavoring

the cone over dP1 (equivalently Y 2,1) to study realizations of the ISS mechanism [26] in

string theory. The flavoring they consider is of chiral type, with a cascade quite similar

to the one presented here. It would be interesting to explicitly realize the gravity duals to

those models.
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Lastly, the appearance of 4d chiral zero modes along the intersection of branes with

flux could have a relevance for the construction of phenomenological models. In [41] it was

considered a mechanism for localizing fermions in the bulk of a Randall-Sundrum throat.

Here we explicitly see another possibility.

Acknowledgments

I would like to warmly thank Bobby Acharya, Matteo Bertolini, Giulio Bonelli, Felipe

Canoura, Stefano Cremonesi, Jose Edelstein, Sameer Murthy, Carlos Nuñez, Alfonso Ra-
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A. Conventions and Calabi-Yau geometry

My conventions on the Hodge dual in six and ten dimensions is that Fp ∧ ∗Fp = |Fp|2 voln,

where |Fp|2 = 1
p!(Fp)µ1...µn(Fp)ν1...νng

µ1ν1 . . . gµnνn . Then the Euclidean Hodge dual in 6d

and the Lorentzian one in 10d (mostly plus signature) act on a vielbein basis respectively as:

∗6(e
a1 ∧ · · · ∧ eap) =

ǫa1...apb1...bn−p

(n− p)!
eb1 ∧ · · · ∧ ebn−p (A.1)

∗10(e
a1 ∧ · · · ∧ eap) =

ǫa1...apb1...bn−p

(n− p)!
(−1)δai,0 eb1 ∧ · · · ∧ ebn−p , (A.2)

where δai,0 is 1 only when one of the ai is the time component. The 6d Kähler form and

holomorphic form (3.2) and (3.3) satisfy the following properties: are closed, co-closed,

J ∧ J = 2 ∗6 J , ∗6Ω = −iΩ and J3 = 3i
4 Ω ∧ Ω = 6vol6. A convenient vielbein basis,

compatible with metric, complex structure and orientation, is:

dr,
1

3
r g5,

r√
6
dθ1, − r√

6
sin θ1 dϕ1,

r√
6
dθ2, − r√

6
sin θ2 dϕ2 . (A.3)

Notice that the induced volume forms on the 4-cycles Σj and the 2-cycle S2 get a minus

sign in front.

The holomorphic (3,0)-form can be derived in the following way. First the complex

structure of the conifold is inherited from C4 by defining it as the locus z1z2 − z3z4 = 0.

The coordinates zi are related to my coordinates through

z1 = r3/2ei/2(ψ−ϕ1−ϕ2) sin(θ1/2) sin(θ2/2) z3 = r3/2ei/2(ψ+ϕ1−ϕ2) cos(θ1/2) sin(θ2/2)

z2 = r3/2ei/2(ψ+ϕ1+ϕ2) cos(θ1/2) cos(θ2/2) z4 = r3/2ei/2(ψ−ϕ1+ϕ2) sin(θ1/2) cos(θ2/2) .

(A.4)

We can perform the linear change of coordinates

z1 = w1 + i w2 z2 = w1 − i w2 z3 = w3 + i w4 z4 = −w3 + i w4 , (A.5)
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so that the conifold equation becomes w2
1 +w2

2 +w2
3 +w2

4 = 0. Then the holomorphic form

is given by

Ω =
dw2 ∧ dw3 ∧ dw4

w1
. (A.6)

B. Equations of motion

The equations of motion for the form-fields can easily be derived from the Einstein frame

action in the following fashion:

SIIB =
1

2κ2
10

{∫
d10x

√−g R − 1

2

∫ [
∂φ ∧ ∗∂φ+ e2φF1 ∧ ∗F1 +

1

2
F5 ∧ ∗F5

+ e−φH3 ∧ ∗H3+eφF3 ∧ ∗F3+C4 ∧H3 ∧ F3

]

−
∫
d8ξ eφ

√
− det(ĝ + e−φ/2 F)

+

∫ [
Ĉ8 − Ĉ6 ∧ F +

1

2
Ĉ4 ∧ F ∧ F − 1

6
Ĉ2 ∧ F3 +

1

24
C0 F4

]}
.

(B.1)

I substituted 2κ2
10µ7 = 1.

Unfortunately, not all the source terms are correctly derived from it. For instance, the

source term in dF5 comes without the 1
2 factor in front. The same problem arises if we

consider a D3-brane: the action SWZ = µ3

∫
Ĉ4 gives us twice the correct source term in

the BI of F5. The origin of this is that a D3-brane is both an electric and magnetic source,

and a Lagrangian formulation is not suitable for it. A good guiding principle is requiring

the full system of EOM’s to be consistent with d2 = 0.

Problematic is also the EOM for d(e−φ∗H3). The bulk computation involves in general

all gauge potentials, which are not defined in the presence of the sources we want to take

into account. Thus our strategy will be that of introducing sources one-by-one. At the

level of EOM’s, all the sources can be introduced at the same time.

The variation of the type IIB bulk action with respect to B2 is:

2κ2
10

δSIIB

δB2
=

1

2
d
(
−C2 ∧ ∗F5 + 2 e−φ ∗H3 − 2C0 e

φ ∗ F3 +C4 ∧F3 +C0C4 ∧H3

)
. (B.2)

Without sources, the EOM is easily worked out substituting the BI’s, and we get (4.2).

Anyway, in the presence of sources there are obstructions. If dFp − H3 ∧ Fp−3 6= 0 then

Cp−1 is not defined. In these situations the equation is meaningless. Then we perform a

partial integration in (B.2), exploiting that d2 = 0:

2κ2
10

δSIIB

δB2
=

1

2
d
(
2 e−φ ∗H3 −H3 ∧ C2 ∧ C2 − 2C2 ∧ F5 + 2C0 F7

)
(B.3)

so that the equation is:

d
(
e−φ ∗H3

)
= −F1 ∧ F7 − F5 ∧ F3 + C2 ∧ dF5 − C0 dF7 −

−C2 ∧H3 ∧ F3 +C0H3 ∧ F5 + (DBI + WZ) . (B.4)
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Now we can consistently take dF5 −H3 ∧ F3 6= 0 and dF7 −H3 ∧ F5 6= 0. With a different

partial integration we can obtain another equation involving only C4 and C6 and not C0

and C2. Now we can substitute the BI’s to get the correct source terms from the bulk

action. The result is:

d
(
e−φ ∗H3

)
= −F1∧F7−F5∧F3−

(
C6−C4∧F +

1

2
C2∧F2− 1

3!
C0 F3

)
∧Ω2 + . . . (B.5)

The terms we are still missing are the ones from the DBI and WZ action.

The contribution from the D7-brane action is obtained by recalling that δSD7/δB2 =

δSD7/δF :

2κ2
10

δSD7

δB2
= −eφ δ

δF
√

− det(ĝ + e−φ/2 F) δ(2)(D7) −

−
(
C6 − C4 ∧ F +

1

2
C2 ∧ F2 − 1

3!
C0 F3

)
∧ Ω2 . (B.6)

Notice that the first piece is not explicitly written as a form. Eventually, summing the

bulk and brane contribution to the equation, we get:

d
(
e−φ ∗H3

)
= −F1 ∧ F7 − F5 ∧ F3 + eφ

δ

δF
√

− det(ĝ + e−φ/2 F) δ(2)(D7) . (B.7)

As we show below, it considerably simplifies in our setup: a spacetime-filling D7-brane

in a warped product space, along an holomorphic 4-cycle and with (1, 1) anti-self-dual flux.

In this case the variation can be written as:

eφ
δ

δF
√

− det(ĝ + e−φ/2 F) δ(2)(D7) = −h−1 dvol3,1 ∧ F ∧ Ω2 . (B.8)

Adding the Wess-Zumino actions for D3 and D5-branes we can in the same way com-

pute the charges they source. In particular:

SIIB ⊃ µ3

∫

D3
Ĉ4 + µ5

∫

D5
Ĉ6 (B.9)

leads to the effective charges written in equation (7.1) (apart from the factor of 2 mentioned

above).

B.1 SU(3)-structure manifolds and submanifolds

I give here some useful formulae. In our setup the D7-brane wraps an holomorphic 4-cycle

in a 6d complex SU(3)-structure manifold. The 4-cycle inherits a complex structure and a

(non-closed) Kähler form Ĵ . Moreover the gauge flux F on it is real (1, 1) and primitive

(F ∧ Ĵ = 0). This is equivalent to F = − ∗4 F [35]. I give an expression for
√

det |ĝ + F|
and its derivatives in this particular case.

F = − ∗4 F ⇒
√

det |ĝ + F| d2nx =
1

2
(Ĵ ∧ Ĵ −F ∧ F) . (B.10)

Moreover in [35] it is claimed that

√
det |ĝ + F| d2nx ≥ 1

2
(Ĵ ∧ Ĵ −F ∧ F) , (B.11)
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and the inequality is saturated only for an holomorphic embedding and F = − ∗4 F .

Then I compute the variation of the determinant under a general variation of F :

δ
√

det |ĝ + F| =
1

2

√
det |ĝ + F| (ĝ + F)−1 t [ab] δFab . (B.12)

This expression evaluated for an ASD F (but still completely general δF) gives:

δ
√

det |ĝ + F| d4x
∣∣∣
F=−∗4F

= −F ∧ δF . (B.13)

B.2 Probes: SUSY vs EOM’s

With formula (B.13) at hand it is easy to verify that the κ-symmetry constraints for the D7-

brane imply that the equation of motion of the gauge connection A is satisfied. Making use

of the actual warped product shape of the metric and taking advantage of the κ-symmetry

constraints, the variation of the DBI plus WZ action is evaluated to be

2κ2
10

δSD7

δF = −h−1 vol3,1 ∧ F − Ĉ6 + Ĉ4 ∧ F − 1

2
Ĉ2 ∧ F2 +

1

6
Ĉ0 F3 . (B.14)

The EOM for A states that this must be closed:

0 = 2κ2
10 d

δSD7

δF = −dh−1 vol3,1 ∧F −h−1 vol3,1 ∧ dF − F̂7 + F̂5 ∧F − 1

2
F̂3 ∧F2 +

1

6
F̂1 ∧F3

(B.15)

In our class of solutions the terms F̂3 ∧ F2 and F̂1 ∧ F3 automatically vanish, while the

first four terms cancel provided that

F5 = dh−1 ∧ vol3,1 + Hodge dual eφ ∗6 F3 = H3 dF = Ĥ3 . (B.16)

In particular F7 = −eφ ∗10 F3 = −eφh−1vol3,1 ∧ ∗6F3 = −h−1vol3,1 ∧H3.

C. SUSY variations

I will make use of the following SUSY variation of Type IIB Supergravity:

δǫλ =
1

2
ΓM

(
∂Mφ− i eφF

(1)
M

)
ǫ+

i

24
eφ/2 ΓMNP

(
F

(3)
MNP − ie−φHMNP

)
ǫ∗ (C.1)

δǫγM = ∂M ǫ+
1

4
ωNPMΓNP ǫ+

i

4
eφ F

(1)
M ǫ+

i

16 · 5!F
(5)
NPQRSΓNPQRSΓM ǫ (C.2)

− i

96
eφ/2

(
F

(3)
NPQ − ie−φHNPQ

)(
Γ NPQ
M − 9δNMΓPQ

)
ǫ∗ , (C.3)

with Γ’s real matrices. From the metric ansatz (5.2) we derive the following vielbein, which

is compatible with complex structure and orientation:

eµ = h−1/4 dxµ

eρ = h1/4eu dρ

eψ = h1/4 e
u

3
g5

eθj = h1/4 e
g

√
6
dθj

eϕj = −h1/4 e
g

√
6

sin θj dϕj .

(C.4)
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The spin connection in vielbein indices is:

ωµρ = −e
−uh′

4h5/4
eµ

ωθjρ =
e−u(4hg′ + h′)

4h5/4
eθj

ωϕjρ =
e−u(4hg′ + h′)

4h5/4
eϕj

ωθjϕj = −
√

6
e−g cot θj

h1/4
eϕj − e−2g+u

h1/4
eψ

ωψρ =
e−u(4hu′ + h′)

4h5/4
eψ

ωψθj =
e−2g+u

h1/4
eϕj

ωψϕj = −e
−2g+u

h1/4
eθj .

(C.5)

I will perform computations in vielbein indices. From the ansatz for the 5-form

flux (6.7) we get, contracting with the Γ’s and lowering the indices:

F
(5)
NPQRSΓNPQRS = 5!

e−uh′

h5/4
(Γ0123ρ + Γψθ1ϕ1θ2ϕ2

) . (C.6)

The usual ansatz for the preserved Killing spinor in the bulk is:

ǫ = h−1/8e−i
ψ
2 ǫ0 Γ0123 ǫ = −i ǫ

Γ0123ρψθ1ϕ1θ2ϕ2
ǫ = ǫ Γρψ ǫ = Γθ1ϕ1

ǫ = Γθ2ϕ2
ǫ = −i ǫ .

(C.7)

We can start computing the variations. The terms containing ǫ and ǫ∗ give indepen-

dent equations. Let me start with the ǫ ones. The dilatino variation gives the equation for

φ in (5.16), while the gravitino variations give the equations for g and u. Then we consider

the ǫ∗ terms, recall that the Γ’s are real. The equation we obtain is equivalent to imposing

eφ ∗6 F3 = H3.

I have checked that the solutions satisfy the Bianchi identities and the equations of

motion (4.2) and (B.7) for the form-fields.

D. Comparison with Ouyang’s procedure

In [15] the same issue as here is addressed: the addition of D7-branes to the Klebanov-

Tseytlin background. The author computes the effect of the branes at leading order in

Nf/M , as a perturbation of the original background. His procedure to extract the first

correction to the 3-form flux G3 is imposing the correct SL(2,Z) monodromy as circling

around the brane. I would like to briefly comment on how this is equivalent to taking into

account the worldvolume gauge bundle, which we saw is so important to obtain the correct

scaling Meff →Meff −Nf .

Let me start showing how can a monodromy contain information about localized

charges. Let τ = C0 + ie−φ be the axio-dilaton. A D7-brane generates a monodromy

τ → τ + 1 (where the general SL(2,Z) transformation is τ → aτ+b
cτ+d ). Thus

1 = C0

∣∣∣
2π

0
=

∫

γ
dC0 =

∫

γ
F1 =

∫

Σ
dF1 ⇒ dF1 = −δ2(D7) , (D.1)

where γ is a 1-cycle circling the D7, Σ is a 2-surface having γ as a boundary, δ2(D7) is a

delta-form at the D7 location and (−) comes from the orientation.
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What is the information encoded into G3 → G3

cτ+d? In our case G3 has trivial mon-

odromy, so the same is true for F3 and H3. Then:

0 = F3

∣∣∣
2π

0
=

∫

γ
dF3 =

∫

γ
(H3 ∧F1 +α4) =

∫

Σ
[H3 ∧ δ2(D7)+ dα4] = −Ĥ3 +

∫

Σ
dα4 . (D.2)

The triviality of the monodromy implies that the source term α4 in the Bianchi identity is

non-vanishing, and in fact equal to the gauge bundle induced charge:

sources = α4 = −F ∧ δ2(D7) (D.3)

with dF = Ĥ3.

E. Poincaré duals and exceptional divisors

On compact and oriented manifolds Poicaré duality is a canonical isomorphism between

Hp(M,R) and Hn−p(M,R), established through the two canonical isomorphisms with

Hp∗(M,R) defined using the two linear pairings:

(Cp, αp) =

∫

Cp

αp and (αp, βn−p) =

∫
αp ∧ βn−p . (E.1)

Equivalently, the duality Cp ↔ ωn−p can be established requiring that for every cohomology

class αp: ∫

Cp

αp =

∫
αp ∧ ωn−p . (E.2)

Given a metric, one can also define Hodge duality from Hp(M,R) to Hn−p(M,R). Poicaré

duality maps the intersection operator ∩ in homology to the wedge operator ∧ in cohomol-

ogy. If the dimension of M is n = 2l then the intersection number is given by

#(Cl,Dl) =

∫

Cl∩Dl

1 =

∫
ωl ∧ σl . (E.3)

In order to understand the geometry and the induced charges of probe branes at the

conifold singularity it is better to resolve it. This process in general breaks supersymmetry,

but it is a good way of computing topological quantities such as charges. The metric and

the Kähler form of the resolved conifold are [42]:

ds26 =
1

k(r)
dr2 +

r2

9
k(r)(g5)2 +

r2

6
(dθ2

1 + sin2 θ1 dϕ
2
1) +

r2 + a2

6
(dθ2

2 + sin2 θ2 dϕ
2
2) (E.4)

J =
r

3
dr ∧ g5 − r2

6
sin θ1 dθ1 ∧ dϕ1 −

(r2 + a2)

6
sin θ2 dθ2 ∧ dϕ2 (E.5)

k =
r2 + 9a2

r2 + 6a2
. (E.6)

The coordinates have range: r ∈ [0,∞), ψ ∈ [0, 4π), θj ∈ [0, π] and ϕj ∈ [0, 2π). In this

appendix I will care attention to minus signs in J which reappear in the pulled-back volume

forms in 4d and 2d, and consequently in the computation of integrals.
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Consider the two non-compact 4-cycles Σj = {θj, ϕj = const}. From the expression of

the metric it is easy to see that Σ1 has a non-vanishing 2-cycle at the origin and thus it is

Ĉ2 blown up at a point. Of course the 2-cycle is exactly the same as the one blown up to

resolve the conifold. Instead Σ2 still has the topology of C2 and only touches the 2-cycle

at a point. Under a flop transition the rôle of the two 4-cycles gets exchanged.

I construct a resolved B2 on the resolved conifold following the requirements: B2 is

(1, 1), closed and primitive (B2 ∧ J ∧ J = 0). I start with an ansatz constructed taking the

three pieces of J with general functions fi=1,2,3(r) in front. Primitivity fixes the relation

f1 = f2 + f3. Closure gives us a system of two linear first order ODE’s. Only one of the

two solutions is regular at the origin:

B2 =
π b0
2

{
− 2ra2

(r2 + a2)2
dr∧g5+

r2

r2 + a2
sin θ1 dθ1∧dϕ1−

r2 + 2a2

r2 + a2
sin θ2 dθ2∧dϕ2

}
. (E.7)

The normalization is fixed such that
∫
S2 B2 = 4π2b0, where S2 = {θ1 = θ2, ϕ1 = −ϕ2;

r, ψ = const}. Notice that B2 approaches a constant non-zero value at infinity. This is

because the geometry has a 2-cycle supporting it.

Now I go on with the construction of F = B̂2 + 2πF2 on the 4-cycles of interest. I am

looking for fluxes that fall off at infinity, because in the singular limit I only want finite

induced charges. Consider Σ2, with topology of C2. Not there being any 2-cycle we can

simply set F2 to cancel B̂2, so that F|Σ2
= 0. On Σ1 with topology of Ĉ2 the situation is

different. We cannot set 2πF2 equal and opposite to B̂2, because its flux is quantized on

S2. We can instead set a closed F2 with vanishing flux on S2 that kills the tail of B̂2:

F = B̂2 + 2πF2 =
π b0
2

{
− 4ra2

(r2 + a2)2
dr ∧ ĝ5 − 2a2

r2 + a2
sin θ2 dθ2 ∧ dϕ2

}
. (E.8)

One can explicitly verify that F ∧ Ĵ = 0,
∫
S2 F = 4π2b0 and

∫
F ∧F = −(4π2b0)

2. On the

other hand, with a different choice of F2 we could also add further flux on S2, obtaining

the same F of (E.8) but with b0 → b0 + φ0.

Such an F is in fact proportional to the anti-self-dual (and primitive) Poincaré dual

of S2 on Σ1. The two integrals tell us that the self-intersection number of S2 in Ĉ2 is −1.

This is true in general: the exceptional S2 arising in the blowing up of a smooth point has

self-intersection number −1.

I would like to conclude with the 4-cycle ΣK = {θ1 = θ2, ϕ1 = ϕ2} which has the

topology of Ĉ2/Z2 blown up at the origin. In this case B̂2 falls off at infinity (indeed in

the singular limit B̂2 = 0) but B̂2 ∧ Ĵ 6= 0 so that again we need to add a suitable fluxless

F2. Again B̂2 is proportional to the Poincaré dual to the 2-cycle, even if it is not the

anti-self-dual representative in the cohomology class. One can compute
∫
S2 B

2 = 4π2b0
and

∫
ΣK

B2 ∧B2 = −1
2(4π2b0)

2, confirming that the self-intersection number of S2 in ΣK

is −2. A generic C2/ZN singularity is resolved by blowing up N − 1 intersecting P1’s Ej ,

whose non-vanishing intersections are

Ei · Ei = −2 Ei ·Ei+1 = 1 . (E.9)
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The curvature couplings appearing in the reduced D7 WZ actions (8.6) and (8.7) are

obtained by explicit evaluation of

(curv) = − 1

48

∫

Σ
p1(R) =

1

48

∫

Σ

TrR ∧R
8π2

, (E.10)

and on a four dimensional manifold we have:

TrR∧R =
1

4
Rab cdR

b
a ef ǫ

cdef dξ1234 . (E.11)

In fact in non-compact cases we cannot appeal to its relation to topological invariants, as

the behavior of the metric at infinity influences the result.12 I found:

C
2 : (curv) =

1

216
Ĉ2 : (curv) = − 23

432
. (E.12)

It would be nice to understand the meaning of these numbers.
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